<table>
<thead>
<tr>
<th>Hot Spot #</th>
<th>Feature Type</th>
<th>Hot Spot-Proposed Trail Interaction</th>
<th>Erosion Risk</th>
<th>Active Erosion</th>
<th>Active Depos.</th>
<th>Prox to stream or SEZ</th>
<th>Connect. to stream or SEZ</th>
<th>Overall Priority</th>
<th>Problem Description, Notes</th>
<th>Mitigation Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>road-drainage crossing</td>
<td>N</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>lower end of dipper drainage crosses summer road; know to carry moderate flow during spring runoff</td>
<td>install mulch berms in channel above and below road; create infiltration/spreading area below road</td>
</tr>
<tr>
<td>20</td>
<td>drainage</td>
<td>Y</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>proposed trail alignment crosses defined drainage (created by concentrated runoff from water bars on Orion's ski run upslope)</td>
<td>realign trail to avoid drainage or design stable drainage crossing</td>
</tr>
<tr>
<td>21</td>
<td>drainage</td>
<td>Y</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>proposed trail alignment crosses defined drainage (created by concentrated runoff from water bars on Orion's ski run upslope)</td>
<td>realign trail to avoid drainage or design stable drainage crossing</td>
</tr>
<tr>
<td>22</td>
<td>drainage</td>
<td>Y</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>proposed trail alignment crosses defined drainage (created by concentrated runoff from water bars on Orion's ski run upslope)</td>
<td>realign trail to avoid drainage or design stable drainage crossing</td>
</tr>
<tr>
<td>23</td>
<td>drainage</td>
<td>Y</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>proposed trail alignment crosses defined drainage (created by concentrated runoff from water bars on Orion's ski run upslope)</td>
<td>realign trail to avoid drainage or design stable drainage crossing</td>
</tr>
<tr>
<td>24</td>
<td>drainage</td>
<td>Y</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>proposed trail alignment crosses defined drainage (created by concentrated runoff from water bars on Orion's ski run upslope)</td>
<td>realign trail to avoid drainage or design stable drainage crossing</td>
</tr>
</tbody>
</table>

Table 2. Points of Interest (NV-1 Watershed)

<table>
<thead>
<tr>
<th>ID</th>
<th>Feature Type</th>
<th>Hot Spot-Proposed Trail Interaction</th>
<th>Erosion Risk</th>
<th>Active Erosion</th>
<th>Active Depos.</th>
<th>Prox to stream or SEZ</th>
<th>Connect. to stream or SEZ</th>
<th>Problem Description, Notes</th>
<th>Mitigation Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>proposed trail</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>L</td>
<td>M</td>
<td>no concentrated flow in proposed advanced trail alignment; steep rocky depositional area below</td>
<td>no action recommended</td>
</tr>
<tr>
<td>2</td>
<td>proposed trail</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>L</td>
<td>M</td>
<td>moderate slope; lots of rocks/logs; no obvious erosion or concentrated surface runoff</td>
<td>no action recommended</td>
</tr>
<tr>
<td>ID</td>
<td>Feature Type</td>
<td>Hot Spot-Proposed Trail Interaction</td>
<td>Erosion Risk</td>
<td>Active Erosion</td>
<td>Active Depos.</td>
<td>Prox to stream or SEZ</td>
<td>Connect. to stream or SEZ</td>
<td>Problem Description, Notes</td>
<td>Mitigation Recommendations</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3</td>
<td>proposed trail</td>
<td>N L N L L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>proposed trail alignment - low erosion risk</td>
<td>no action recommended</td>
</tr>
<tr>
<td>4</td>
<td>drainage</td>
<td>N H Y Y L H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dipper drainage (legacy impact)</td>
<td>no action recommended</td>
</tr>
</tbody>
</table>
EROSION HOT SPOT PHOTOS

Table 3. Erosion Hot Spot Photo Summary (NV-1 Watershed)

<table>
<thead>
<tr>
<th>Hot Spot #</th>
<th>Photo 1</th>
<th>Photo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Points of Interest Photo Summary (NV-1 Watershed)

<table>
<thead>
<tr>
<th>ID</th>
<th>Photo 1</th>
<th>Photo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EROSION HOT SPOT MAPS

See next page.
Figure 1. EfRA Summary Map showing hot spots in NV-1 watershed, zoomed in to hot spot locations.
Figure 2. EfRA Summary Map showing hot spots in Mott Canyon (NV-1), zoomed out to show entire NV-1 watershed.

Mott Canyon (NV-1) Erosion Assessment - 2014
Page 18
LITERATURE CITED

APPENDIX 3.5-A
AIR QUALITY MODELING TABLES
<table>
<thead>
<tr>
<th>Equipment Description</th>
<th>Load (lbs)</th>
<th>Tier</th>
<th>NOx (g/ton)</th>
<th>CO (g/ton)</th>
<th>VOC (g/ton)</th>
<th>SOx (g/ton)</th>
<th>PM10 (g/ton)</th>
<th>PM2.5 (g/ton)</th>
<th>CO2 (metric tons)</th>
<th>CH4 (metric tons)</th>
<th>N2O (metric tons)</th>
<th>CO2e (metric tons)</th>
<th>NOx (g/ton)</th>
<th>CO (g/ton)</th>
<th>VOC (g/ton)</th>
<th>SOx (g/ton)</th>
<th>PM10 (g/ton)</th>
<th>PM2.5 (g/ton)</th>
<th>CO2 (metric tons)</th>
<th>CH4 (metric tons)</th>
<th>N2O (metric tons)</th>
<th>CO2e (metric tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe 75</td>
<td>0.55</td>
<td>Off</td>
<td>3.49 (2)</td>
<td>0.74 (2)</td>
<td>0.10 (4)</td>
<td>0.0056 (5)</td>
<td>0.70 (6)</td>
<td>591 (7)</td>
<td>0.024 (18,19)</td>
<td>0.76 (4)</td>
<td>0.70 (6)</td>
<td>0.024 (18,19)</td>
<td>1.80 (2)</td>
<td>0.0056 (5)</td>
<td>0.70 (6)</td>
<td>591 (7)</td>
<td>0.024 (18,19)</td>
<td>0.76 (4)</td>
<td>0.70 (6)</td>
<td>0.024 (18,19)</td>
<td>0.76 (4)</td>
<td>0.70 (6)</td>
</tr>
<tr>
<td>Water truck, 2012 Model Year 381 (1)</td>
<td>0.57 On</td>
<td>52</td>
<td>4</td>
<td>5.0</td>
<td>20.0</td>
<td>260.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.28E-02</td>
<td>1.09E-02</td>
<td>5.48E-03</td>
<td>1.67E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Forklift 149</td>
<td>0.3 Off</td>
<td>40</td>
<td>1.6</td>
<td>2.0</td>
<td>3.2</td>
<td>80.0</td>
<td>7.43 (16)</td>
<td>4.13 (16)</td>
<td>0.86 (16)</td>
<td>0.0049 (16)</td>
<td>0.62 (16)</td>
<td>0.57 (16)</td>
<td>0.021 (21,22)</td>
<td>1.46E-02</td>
<td>8.14E-03</td>
<td>1.70E-03</td>
<td>9.66E-06</td>
<td>1.22E-03</td>
<td>1.75E-03</td>
<td>3.90E-01</td>
<td>4.96E+00</td>
<td>1.78E-01</td>
</tr>
<tr>
<td>Drill Rig 82</td>
<td>0.75 Off</td>
<td>60</td>
<td>4</td>
<td>1.0</td>
<td>4.0</td>
<td>60.0</td>
<td>4.32 (16)</td>
<td>1.24 (16)</td>
<td>0.25 (16)</td>
<td>0.0049 (16)</td>
<td>0.13 (16)</td>
<td>0.12 (16)</td>
<td>0.021 (21,22)</td>
<td>1.67E-02</td>
<td>5.03E-03</td>
<td>1.02E-03</td>
<td>1.99E-05</td>
<td>5.43E-04</td>
<td>5.00E-04</td>
<td>2.12E+00</td>
<td>0.000086</td>
<td>0.000017</td>
</tr>
<tr>
<td>Backhoe 75</td>
<td>0.55 Off</td>
<td>3</td>
<td>156.0</td>
<td>12.0</td>
<td>7.5</td>
<td>90.0</td>
<td>1,170</td>
<td>8.43 (12)</td>
<td>107.2 (12)</td>
<td>3.85 (12)</td>
<td>0.010 (13)</td>
<td>0.90 (13)</td>
<td>0.021 (21,22)</td>
<td>3.31E-02</td>
<td>4.20E-01</td>
<td>1.51E-02</td>
<td>3.92E-05</td>
<td>2.35E-04</td>
<td>2.16E-04</td>
<td>1.79E+00</td>
<td>0.000073</td>
<td>0.000015</td>
</tr>
<tr>
<td>Water truck, 2012 Model Year 381 (1)</td>
<td>0.57 On</td>
<td>52</td>
<td>4</td>
<td>5.0</td>
<td>20.0</td>
<td>260.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.28E-02</td>
<td>1.09E-02</td>
<td>5.48E-03</td>
<td>1.67E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Forklift 149</td>
<td>0.3 Off</td>
<td>40</td>
<td>1.6</td>
<td>2.0</td>
<td>3.2</td>
<td>80.0</td>
<td>7.43 (16)</td>
<td>4.13 (16)</td>
<td>0.86 (16)</td>
<td>0.0049 (16)</td>
<td>0.62 (16)</td>
<td>0.57 (16)</td>
<td>0.021 (21,22)</td>
<td>1.46E-02</td>
<td>8.14E-03</td>
<td>1.70E-03</td>
<td>9.66E-06</td>
<td>1.22E-03</td>
<td>1.75E-03</td>
<td>3.90E-01</td>
<td>4.96E+00</td>
<td>1.78E-01</td>
</tr>
<tr>
<td>Drill Rig 82</td>
<td>0.75 Off</td>
<td>60</td>
<td>4</td>
<td>1.0</td>
<td>4.0</td>
<td>60.0</td>
<td>4.32 (16)</td>
<td>1.24 (16)</td>
<td>0.25 (16)</td>
<td>0.0049 (16)</td>
<td>0.13 (16)</td>
<td>0.12 (16)</td>
<td>0.021 (21,22)</td>
<td>1.67E-02</td>
<td>5.03E-03</td>
<td>1.02E-03</td>
<td>1.99E-05</td>
<td>5.43E-04</td>
<td>5.00E-04</td>
<td>2.12E+00</td>
<td>0.000086</td>
<td>0.000017</td>
</tr>
<tr>
<td>Water truck, 2012 Model Year 381 (1)</td>
<td>0.57 On</td>
<td>52</td>
<td>4</td>
<td>5.0</td>
<td>20.0</td>
<td>260.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.28E-02</td>
<td>1.09E-02</td>
<td>5.48E-03</td>
<td>1.67E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Forklift 149</td>
<td>0.3 Off</td>
<td>40</td>
<td>1.6</td>
<td>2.0</td>
<td>3.2</td>
<td>80.0</td>
<td>7.43 (16)</td>
<td>4.13 (16)</td>
<td>0.86 (16)</td>
<td>0.0049 (16)</td>
<td>0.62 (16)</td>
<td>0.57 (16)</td>
<td>0.021 (21,22)</td>
<td>1.46E-02</td>
<td>8.14E-03</td>
<td>1.70E-03</td>
<td>9.66E-06</td>
<td>1.22E-03</td>
<td>1.75E-03</td>
<td>3.90E-01</td>
<td>4.96E+00</td>
<td>1.78E-01</td>
</tr>
<tr>
<td>Drill Rig 82</td>
<td>0.75 Off</td>
<td>60</td>
<td>4</td>
<td>1.0</td>
<td>4.0</td>
<td>60.0</td>
<td>4.32 (16)</td>
<td>1.24 (16)</td>
<td>0.25 (16)</td>
<td>0.0049 (16)</td>
<td>0.13 (16)</td>
<td>0.12 (16)</td>
<td>0.021 (21,22)</td>
<td>1.67E-02</td>
<td>5.03E-03</td>
<td>1.02E-03</td>
<td>1.99E-05</td>
<td>5.43E-04</td>
<td>5.00E-04</td>
<td>2.12E+00</td>
<td>0.000086</td>
<td>0.000017</td>
</tr>
</tbody>
</table>

Notes:
- **ARB Off-Road or EPA Nonroad Emission Factors (g/ton):** Specific factors vary based on the type of equipment and its operational conditions.
- **Emission Inventory:** Contributions vary depending on the location and type of activity.
- **CO2 emission factor for gasoline (metric tons CO2/bbl fuel):** Calculated using the empirical formula given.
- **CO2 emission factor for Distillate Fuel No. 2 (metric tons CO2/bbl fuel):** Calculated using the empirical formula given.
Appendix 3.4B Table 2

Construction Fugitive Dust Emission Summary in California

Heavenly Mountain Resort Epic Discovery Project

Daily Construction Fugitive Dust Emissions in California

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Project Phase:</th>
<th>Daily Fugitive Dust Emission by Construction Phase</th>
<th>PM<sub>2.5</sub> (lb/day)</th>
<th>PM<sub>10</sub> (lb/day)</th>
<th>PM<sub>2.5</sub> (tpy)</th>
<th>PM<sub>10</sub> (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site Prep</td>
<td>Grading</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCK WATER 3600-4000G F-R SPR BAR / MONITOR 2AX D</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIL DOZER</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINI-EXCAVATOR</td>
<td>0.0035</td>
<td>0.0035</td>
<td>0.0035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKHOE</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORKLIFT</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub> Subtotal (lbs/day)</td>
<td>0.15</td>
<td>0.16</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub> Subtotal (lbs/day)</td>
<td></td>
<td></td>
<td></td>
<td>0.0090</td>
<td>0.0100</td>
<td>0.0068</td>
</tr>
</tbody>
</table>

Annual Construction Fugitive Dust Emissions in California

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Project Phase:</th>
<th>Daily Fugitive Dust Emission by Construction Phase</th>
<th>PM<sub>2.5</sub> (lb/day)</th>
<th>PM<sub>10</sub> (lb/day)</th>
<th>PM<sub>2.5</sub> (tpy)</th>
<th>PM<sub>10</sub> (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site Prep</td>
<td>Grading</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCK WATER 3600-4000G F-R SPR BAR / MONITOR 2AX D</td>
<td>0.00086</td>
<td>0.00086</td>
<td>0.0061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIL DOZER</td>
<td>0.000069</td>
<td>0.000069</td>
<td>0.00033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINI-EXCAVATOR</td>
<td>0.000023</td>
<td>0.000023</td>
<td>0.00011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKHOE</td>
<td>0.000043</td>
<td>0.000043</td>
<td>0.000086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORKLIFT</td>
<td>0.000018</td>
<td>0.000018</td>
<td>0.000018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub> Subtotal (lbs/day)</td>
<td>0.0090</td>
<td>0.0100</td>
<td>0.0068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub> Subtotal (lbs/day)</td>
<td></td>
<td></td>
<td></td>
<td>0.0090</td>
<td>0.0105</td>
<td>0.0065</td>
</tr>
</tbody>
</table>
Construction Offsite On-Road Vehicle Emissions in California

Materials Delivery Truck Emissions in California

<table>
<thead>
<tr>
<th>Maximum Number of Deliveries per Day</th>
<th>Average Vehicle-Miles Traveled per Day</th>
<th>Emission Factors (lbs/VMT)</th>
<th>Daily Emissions (lbs/day)</th>
<th>Daily Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NOx</td>
<td>CO</td>
<td>VOC</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.0270</td>
<td>0.0036</td>
<td>0.00077</td>
</tr>
<tr>
<td>Paved-Road Fugitive Dust</td>
<td></td>
<td>0.0006</td>
<td>0.00049</td>
<td>0.00077</td>
</tr>
</tbody>
</table>

1) Maximum emissions occur during Structure Construction phase.
2) Diesel fuel CO2 emission factor (kg CO2/MMBtu) = 73.96 [(EPA, 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table C-1 to Subpart C, p. 71951, November 29, 2013.)]
3) Diesel fuel CH4 emission factor (kg CH4/MMBtu) = 0.003 [(EPA, 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table C-2 to Subpart C, p. 71952, November 29, 2013.)]
4) Diesel fuel N2O emission factor (kg N2O/MMBtu) = 0.0006 Ibid
5) CH4 Global Warming Potential (-) = 25 [(EPA, 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table 2, p. 71952, November 29, 2013.)]
Construction Worker Vehicle Emissions in California

Appendix 3.4 Table 3

Construction Offsite On-Road Vehicle Emissions in California

Heavenly Mountain Resort Epic Discovery Project

<table>
<thead>
<tr>
<th>Max Number of Workers Per Day</th>
<th>Average Employee Round Trips Per Day</th>
<th>Average Round Trip Distance (Miles)</th>
<th>Carpool Factor (No. People per Vehicle)</th>
<th>Vehicle Miles Traveled Per Day (Miles)</th>
<th>Emission Factors (lbs/vmt)</th>
<th>Daily Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>40</td>
<td>3</td>
<td>NOx: 0.00129, CO: 0.00084, VOC: 0.000011, SOx: 0.000229, PM10: 0.000159, PM2.5: 1.13, CH4: 0.00000046, N2O: 0.000000127, O2: 2.3, CO2: 0.00000038, PM10: 0.000015, PM2.5: 0.00046, CH4: 0.00019, N2O: 0.000127, O2: 2.3</td>
<td>0.341 0.26</td>
</tr>
<tr>
<td>Paved-Road Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0047 0.0012</td>
<td></td>
</tr>
</tbody>
</table>

Worker Travel Daily Emissions in California (Maximum)

<table>
<thead>
<tr>
<th>Max Number of Workers Per Day</th>
<th>Average Employee Round Trips Per Day</th>
<th>Average Round Trip Distance (Miles)</th>
<th>Carpool Factor (No. People per Vehicle)</th>
<th>Vehicle Miles Traveled Per Day (Miles)</th>
<th>Emission Factors (lbs/vmt)</th>
<th>Daily Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>13.3</td>
<td>40</td>
<td></td>
<td>318</td>
<td>NOx: 0.00024, CO: 0.00026, VOC: 0.000011, SOx: 0.0000229, PM10: 0.000159, PM2.5: 1.13, CH4: 0.00000046, N2O: 0.000000127, O2: 2.3, CO2: 0.00000038, PM10: 0.000015, PM2.5: 0.00046, CH4: 0.00019, N2O: 0.000127, O2: 2.3</td>
<td>0.341 0.26</td>
</tr>
<tr>
<td>Paved-Road Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0047 0.0012</td>
<td></td>
</tr>
</tbody>
</table>

Worker Travel Annual Emissions in California

<table>
<thead>
<tr>
<th>Max Number of Workers Per Day</th>
<th>Average Employee Round Trips Per Day</th>
<th>Average Round Trip Distance (Miles)</th>
<th>Carpool Factor (No. People per Vehicle)</th>
<th>Vehicle Miles Traveled Per Year</th>
<th>Emission Factors (lbs/vmt)</th>
<th>Annual Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>13.3</td>
<td>40</td>
<td></td>
<td>318</td>
<td>NOx: 0.00024, CO: 0.00026, VOC: 0.000011, SOx: 0.0000229, PM10: 0.000159, PM2.5: 1.13, CH4: 0.00000046, N2O: 0.000000127, O2: 2.3, CO2: 0.00000038, PM10: 0.000015, PM2.5: 0.00046, CH4: 0.00019, N2O: 0.000127, O2: 2.3</td>
<td>0.341 0.26</td>
</tr>
<tr>
<td>Paved-Road Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0047 0.0012</td>
<td>0.0049 0.0012</td>
</tr>
</tbody>
</table>

4/25/2014

Emission Inventory20140421;CA_ConstructionOffsiteEmissABT3
Emission Factors

Tier

<table>
<thead>
<tr>
<th>Tier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Emission Inventory

201405032015 Total Const Equip Emis ABT

13) The sulfur concentration in gasoline is assumed to be 30 ppmw, based on EPA News Release.

9) Sweyco Trail Dozer Model 480 specification.

19) Diesel fuel CH4 emission factor (kg CH4/MMBtu) = 0.003 (EPA. 2013 Revisions to the Greenhouse Gas Reporting Rule and Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table C-2 to Subpart C, p. 71952, November 29, 2013.)

18) Diesel fuel CO2 emission factor (metric tons CO2/bbl fuel) = 0.4296 (CFR Part 98, Subpart MM, Table MM-1).

17) Diesel fuel SO2 emission factor (kg SO2/MMBtu) = 0.1346 (CFR Part 98, Subpart MM, Table MM-1).

16) Diesel fuel NOx emission factor (kg NOx/MMBtu) = 0.4296 (CFR Part 98, Subpart MM, Table MM-1).

15) Drill Rig 82 (1) 0.75 Off 40 8 1.0 8 40 4.3157 (16) 1.2363 (16) 0.2513 (16) 0.0049 (16) 0.1335 (16) 0.1228 (16) 521 (16) 0.021 (18,19) 0.0042 (18,20) 523 (21,22) ------ - - - -

13) CalEEMod (Version 2013.2.2) default value.

12) OFFROAD2007 uses a PM2.5/PM10 ratio = 0.5609.

11) Calculated from BSFC assuming 15 ppmw sulfur in Diesel fuel.

10) 2013 Yamaha Rhino 700 FI 4x4 40 (10) 0.57 (11) Off 3 312.0 24.0 7.5 180 2,340 8.43 (12) 107.23 (12) 3.85 (12) 0.0100 (13) 0.06 (12) 0.055 (6) 456 (7) 0.018 (18,19) 0.0037 (18,20) 457 (21,22) ------ - - - -

9) Sweyco Trail Dozer, tracked 80 (9) 0.64 Off 3 104.0 8 1.5 12 156 5.01 (4) 0.867 (2) 0.19 (4) 0.0050 (5) 0.24 (4) 0.22 (6) 531 (7) 0.022 (18,19) 0.0043 (18,20) 533 (21,22) ------ - - - -

8) Diesel fuel N2O emission factor (kg N2O/MMBtu) = 0.0006 (EPA. 2013 Revisions to the Greenhouse Gas Reporting Rule and Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table C-2 to Subpart C, p. 71952, November 29, 2013.)

7) CH4 Global Warming Potential (-) = 25 (EPA. 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table 2, p. 71909, November 29, 2013.)

6) N2O Global Warming Potential (-) = 298 (EPA. 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Data Elements; Final Rule, Federal Register, Volume 78, Number 230, Table 2, p. 71909, November 29, 2013.)

5) Calculated from BSFC assuming 15 ppmw sulfur in Diesel fuel.

4) Estimated

3) CalEEMod (Version 2013.2.2) default value.

2) EPA, Exhaust and On-Road Emission Factors for Advanced Engine Modeling – Compression Ignition, Report NR-009d, EPA-420-R-10-018, Table A4, July 2010

Appendix 3.4 Table 4

Construction Offsite Equipment Hours, Emissions Factors, and Emissions in California

| Structural Construction Subtotal: | 6,232.0 | 40.0 | - | - | - |

5/8/2014

Emission Inventory20140303015TotalConstEqPemEsc1A74
Table 4

Construction Onsite Offroad Equipment Hours, Emission Factors, and Emissions in California

Heavenly Mountain Resort Epic Discovery Project

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.10E-01</td>
<td>4.36E-01</td>
<td>2.19E-01</td>
<td>6.69E-01</td>
<td>6.33E-03</td>
<td>5.82E-03</td>
<td>3.41E+02</td>
<td>1.38E-02</td>
<td>2.77E-03</td>
<td>3.42E+02</td>
<td>3.32E-03</td>
<td>2.83E-03</td>
<td>1.42E-03</td>
<td>4.35E-03</td>
<td>4.11E-05</td>
<td>3.78E-05</td>
<td>2.22E+00</td>
<td>8.99E-05</td>
<td>1.80E-05</td>
<td>2.22E+00</td>
</tr>
</tbody>
</table>

Weight (tons)

<table>
<thead>
<tr>
<th></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5/8/2014

Emission Inventory201405032015TotalConstEquipEmisABT4
Appendix 3.4 Table 5
Total Project Construction Fugitive Dust Emission Summary

Heavenly Mountain Resort Epic Discovery Project

<table>
<thead>
<tr>
<th>Total Project Construction Daily Fugitive Dust Emissions</th>
<th>Total Project Construction Annual Fugitive Dust Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_{2.5} (lb/day)</td>
<td>PM_{2.5} (tpy)</td>
</tr>
<tr>
<td>Equipment</td>
<td>Project Phase:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCK WATER 3600-4000G F-R SPR BAR / MONITOR 2AX D</td>
<td></td>
</tr>
<tr>
<td>TRAIL DOZER</td>
<td></td>
</tr>
<tr>
<td>MINI-EXCAVATOR</td>
<td></td>
</tr>
<tr>
<td>BACKHOE</td>
<td></td>
</tr>
<tr>
<td>FORKLIFT</td>
<td></td>
</tr>
<tr>
<td>PM_{2.5} Subtotal (lb/day)</td>
<td>0.30</td>
</tr>
</tbody>
</table>

PM_{10} (lb/day)	**PM_{10} (tpy)**						
Equipment	**Project Phase:**	**PM_{10} (lb/day)**	**PM_{10} (tpy)**				
		Site Prep	Grading	Structure Construction	Site Prep	Grading	Structure Construction
TRUCK WATER 3600-4000G F-R SPR BAR / MONITOR 2AX D		2.7	2.7	2.7	0.17	0.17	0.12
TRAIL DOZER		0.19	0.19	0.19	0.0013	0.0013	0.0060
MINI-EXCAVATOR		0.35	0.35	0.35	0.00023	0.00023	0.011
BACKHOE		0.34	0.34	0.34	0.00013	0.00013	0.00026
FORKLIFT		-	-	0.73	0.0091		
PM_{10} Subtotal (lb/day)	3.0	3.5	4.3		0.019	0.022	0.15

PM_{2.5} (lb/day)	**PM_{2.5} (tpy)**						
Equipment	**Project Phase:**	**PM_{2.5} (lb/day)**	**PM_{2.5} (tpy)**				
		Site Prep	Grading	Structure Construction	Site Prep	Grading	Structure Construction
BOOM TRUCK WITH CRANE		-	-	0.10	-	-	0.0016
WHEELED LOADER		0.14	0.14	0.14	0.00042	0.00042	0.0012
DRILL RIG		-	0.061	0.061	0.00015	0.00015	0.00046
ATVs		0.30	0.30	0.30	0.0019	0.0019	0.023
PM_{2.5} Subtotal (lb/day)	0.44	0.50	0.79		0.0024	0.0025	0.026
PM_{2.5} Total (lb/day)	0.74	0.9	1.3		0.0042	0.0053	0.044

PM_{10} (lb/day)	**PM_{10} (tpy)**						
Equipment	**Project Phase:**	**PM_{10} (lb/day)**	**PM_{10} (tpy)**				
		Site Prep	Grading	Structure Construction	Site Prep	Grading	Structure Construction
BOOM TRUCK WITH CRANE		-	-	1.0	-	-	0.0079
WHEELED LOADER		0.069	0.069	0.69	0.0010	0.0010	0.0031
DRILL RIG		-	0.030	0.30	0.00076	0.00076	0.0023
ATVs		1.5	1.5	2.3	0.010	0.010	0.11
PM_{10} Subtotal (lb/day)	2.2	2.5	4.4		0.011	0.034	0.28
PM_{10} Total (lb/day)	5.2	6.0	8.7		0.029	0.034	0.28
Appendix 3.4 Table 6
Construction Offsite On-Road Vehicle Emissions in Nevada
Heavenly Mountain Resort Epic Discovery Project

Materials Delivery Truck Peak Daily Emissions in Nevada

<table>
<thead>
<tr>
<th>Maximum Number of Deliveries per Day</th>
<th>Trip Haul Distance (miles)</th>
<th>Vehicle-Miles Traveled per Day</th>
<th>Emission Factors (lbs/VMT)</th>
<th>Daily Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td>CO</td>
</tr>
<tr>
<td>1</td>
<td>124</td>
<td>124</td>
<td>0.0270</td>
<td>0.0038</td>
</tr>
<tr>
<td>Paved-Road Fugitive Dust</td>
<td></td>
<td></td>
<td>0.056</td>
<td>0.0049</td>
</tr>
</tbody>
</table>

1) Maximum emissions occur during Structure Construction phase.

2) Diesel fuel CO2 emission factor (kg CO2/MMBtu) = 73.96 (EPA, 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 23.

3) Diesel fuel CH4 emission factor (kg CH4/MMBtu) = 0.003 (EPA, 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 23.

4) Diesel fuel N2O emission factor (kg N2O/MMBtu) = 0.0006 (Ibid)

5) CH4 Global Warming Potential (–) = 25 (EPA, 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule, Federal Register, Volume 78, Number 23.

6) N2O Global Warming Potential (–) = 298 (Ibid)

Materials Delivery Truck Annual Emissions in Nevada

<table>
<thead>
<tr>
<th>Number of Deliveries per Year</th>
<th>Average Trip Haul Distance (miles)</th>
<th>Annual Vehicle-Miles Traveled</th>
<th>Emission Factors (lbs/VMT)</th>
<th>Annual Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td>CO</td>
</tr>
<tr>
<td>26</td>
<td>124</td>
<td>5,944</td>
<td>0.0270</td>
<td>0.0038</td>
</tr>
<tr>
<td>Paved-Road Fugitive Dust</td>
<td></td>
<td></td>
<td>0.056</td>
<td>0.0049</td>
</tr>
</tbody>
</table>
Construction Worker Vehicle Emissions in Nevada

Worker Travel Daily Emissions in Nevada (Maximum)

<table>
<thead>
<tr>
<th>Max Number of Workers Per Day</th>
<th>Average Employee Round Trips Per Day</th>
<th>Number of Round Trips Per Day</th>
<th>Carpool Factor (No. People per Vehicle)</th>
<th>Vehicle Miles Traveled Per Day (Miles)</th>
<th>Emission Factors (lbs/vmt)</th>
<th>Daily Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td>NOx: 0.00129</td>
<td>0.0047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO: 0.0086</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC: 0.00084</td>
<td>0.00012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOx: 0.00017</td>
<td>0.000024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10: 0.00029</td>
<td>0.000041</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5: 0.000159</td>
<td>0.000029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2: 1.13</td>
<td>0.000045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH4: 0.000044</td>
<td>0.000001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N2O: 0.34</td>
<td>0.000023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOx: 2,3</td>
<td>0.000046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO: 0.27</td>
<td>0.000035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC: 0.0023</td>
<td>0.000036</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOx: 0.0014</td>
<td>0.000023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10: 0.000224</td>
<td>0.000023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5: 0.000168</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2: 23.1</td>
<td>0.000094</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH4: 0.000088</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N2O: 0.00034</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2e: 22</td>
<td>0.000063</td>
</tr>
</tbody>
</table>

Paved-Road Fugitive Dust

- NOx: 0.0047
- CO: 0.0012
- VOC: 0.00084
- SOx: 0.00017
- PM10: 0.00029
- PM2.5: 0.000159
- CO2: 1.13
- CH4: 0.000044
- N2O: 0.34
- NOx: 2.3
- CO: 0.27
- VOC: 0.0023
- SOx: 0.0014
- PM10: 0.000224
- PM2.5: 0.000168
- CO2: 23.1
- CH4: 0.000088
- N2O: 0.00034
- CO2e: 22

Worker Travel Annual Emissions in Nevada

Emission Inventory 20140503; NV_ConstructionOffsiteEmissionsABT6

<table>
<thead>
<tr>
<th>Annual Average (Weighted) Number of Workers Per Day</th>
<th>Average Employee Round Trips Per Day</th>
<th>Total Number of Round Trips</th>
<th>Average Round Trip Distance (Miles)</th>
<th>Carpool Factor (No. People per Vehicle)</th>
<th>Number of Construction</th>
<th>Vehicle Miles Traveled Per Year</th>
<th>Emission Factors (lbs/vmt)</th>
<th>Annual Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>40</td>
<td>13.3</td>
<td>40</td>
<td>13.3</td>
<td>318</td>
<td>37,000</td>
<td>NOx: 0.000125</td>
<td>0.00047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO: 0.00026</td>
<td>0.000052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC: 0.00048</td>
<td>0.000112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOx: 0.000091</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10: 0.000227</td>
<td>0.000051</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5: 0.000159</td>
<td>0.000036</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2: 1.13</td>
<td>0.000045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH4: 0.000044</td>
<td>0.000001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N2O: 0.34</td>
<td>0.000023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOx: 2.3</td>
<td>0.000046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO: 0.27</td>
<td>0.000035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC: 0.0014</td>
<td>0.000023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOx: 0.00014</td>
<td>0.000019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10: 0.000224</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5: 0.000168</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2: 23.1</td>
<td>0.000094</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH4: 0.000088</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N2O: 0.00034</td>
<td>0.000022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2e: 22</td>
<td>0.000063</td>
</tr>
</tbody>
</table>

Paved-Road Fugitive Dust

- NOx: 0.0047
- CO: 0.0012
- VOC: 0.00048
- SOx: 0.000091
- PM10: 0.000227
- PM2.5: 0.000159
- CO2: 1.13
- CH4: 0.000044
- N2O: 0.34
- NOx: 2.3
- CO: 0.27
- VOC: 0.0014
- SOx: 0.00014
- PM10: 0.000224
- PM2.5: 0.000168
- CO2: 23.1
- CH4: 0.000088
- N2O: 0.00034
- CO2e: 22

(10, Table 2, p. 71909, November 29, 2013.)

Number 230, Table C-1 to Subpart C, p. 71951, November 29, 2013.)

Number 230, Table C-2 to Subpart C, p. 71952, November 29, 2013.)
Appendix 3.4 Table 7
EMFAC 2011 Emission Factors for Construction Water Truck
Heavenly Mountain Resort Epic Discovery Project

<table>
<thead>
<tr>
<th>Region</th>
<th>CalYr</th>
<th>Season</th>
<th>Veh_CLASS</th>
<th>Fuel</th>
<th>MdlYr</th>
<th>Speed (miles/hr)</th>
<th>VMT (miles/day)</th>
<th>ROG_RUNEX (gms/mile)</th>
<th>TOG_RUNEX (gms/mile)</th>
<th>CO_RUNEX (gms/mile)</th>
<th>NOX_RUNEX (gms/mile)</th>
<th>CO2_RUNEX (gms/mile)</th>
<th>PM10_RUNEX (gms/mile)</th>
<th>PM2.5_RUNE (gms/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Dorado County APCD</td>
<td>2015</td>
<td>Summer</td>
<td>T7 tractor construction</td>
<td>DSL</td>
<td>2012</td>
<td>5</td>
<td>0.080660226</td>
<td>2.484901528</td>
<td>2.828871691</td>
<td>4.943122468</td>
<td>5.785701879</td>
<td>3965.47011</td>
<td>3866.33382</td>
<td>0.071744149</td>
</tr>
</tbody>
</table>
Appendix 3.4 Table 8
Construction Equipment Speed
Heavenly Mountain Resort Epic Discovery Project

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Average Vehicle Speed(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUCK WATER 3600-4000G F-H SPR BAR / MONITOR 2AX D</td>
<td>5</td>
</tr>
<tr>
<td>TRAIL DOZER</td>
<td>1.5</td>
</tr>
<tr>
<td>MINI-EXCAVATOR</td>
<td>0.5</td>
</tr>
<tr>
<td>BACKHOE</td>
<td>0.5</td>
</tr>
<tr>
<td>FORKLIFT</td>
<td>2.0</td>
</tr>
<tr>
<td>BOOM TRUCK WITH CRANE</td>
<td>1.5</td>
</tr>
<tr>
<td>WHEELED LOADER</td>
<td>2.0</td>
</tr>
<tr>
<td>DRILL RIG</td>
<td>1.0</td>
</tr>
<tr>
<td>ATVs</td>
<td>7.5 (2)</td>
</tr>
</tbody>
</table>

1) Estimated
2) Assume overall average speed is half the construction area speed limit of 15 mph imposed to help control fugitive dust generation.
Onsite Fugitive Dust Emission Factors

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Units</th>
<th>Uncontrolled PM$_{2.5}$ Emission Factor (lbs/unit)</th>
<th>Uncontrolled PM$_{10}$ Emission Factor (lbs/unit)</th>
<th>Control Factor$^{(1)}$ (lbs/unit)</th>
<th>Controlled PM$_{2.5}$ Emission Factor (lbs/unit)</th>
<th>Controlled PM$_{10}$ Emission Factor (lbs/unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICKUP 3/4 TON 4X4 CREW CAB</td>
<td>VMT</td>
<td>0.098</td>
<td>0.98</td>
<td>96.8%</td>
<td>0.0031</td>
<td>0.031</td>
</tr>
<tr>
<td>Mountain Tour F-350 Truck</td>
<td>VMT</td>
<td>0.115</td>
<td>1.15</td>
<td>96.8%</td>
<td>0.0037</td>
<td>0.037</td>
</tr>
<tr>
<td>TRAIL DOZER</td>
<td>HR</td>
<td>0.41</td>
<td>0.75</td>
<td>96.8%</td>
<td>0.013</td>
<td>0.024</td>
</tr>
<tr>
<td>MINI-EXCAVATOR</td>
<td>VMT</td>
<td>0.27</td>
<td>2.69</td>
<td>96.8%</td>
<td>0.0087</td>
<td>0.087</td>
</tr>
<tr>
<td>BACKHOE</td>
<td>VMT</td>
<td>0.13</td>
<td>1.33</td>
<td>96.8%</td>
<td>0.0043</td>
<td>0.043</td>
</tr>
<tr>
<td>FORKLIFT</td>
<td>VMT</td>
<td>0.14</td>
<td>1.42</td>
<td>96.8%</td>
<td>0.0046</td>
<td>0.046</td>
</tr>
<tr>
<td>BOOM TRUCK WITH CRANE</td>
<td>VMT</td>
<td>0.25</td>
<td>2.47</td>
<td>96.8%</td>
<td>0.0079</td>
<td>0.079</td>
</tr>
<tr>
<td>WHEELED LOADER</td>
<td>VMT</td>
<td>0.27</td>
<td>2.69</td>
<td>96.8%</td>
<td>0.0087</td>
<td>0.087</td>
</tr>
<tr>
<td>DRILL RIG</td>
<td>VMT</td>
<td>0.24</td>
<td>2.37</td>
<td>96.8%</td>
<td>0.0076</td>
<td>0.076</td>
</tr>
<tr>
<td>ATVs</td>
<td>VMT</td>
<td>0.052</td>
<td>0.52</td>
<td>96.8%</td>
<td>0.0017</td>
<td>0.017</td>
</tr>
</tbody>
</table>

$^{(1)}$ Derived in Worksheet "DustEmissionFactorDerivations".